2,2'-Verbrückte Bis(thiophene) aus Bis(1,3-dithiolylium-4-olaten) und Alkinen

Hans Gotthardt*, Wolfgang Pflaumbaum und Peter Gutowski

Fachbereich 9, Lehrstuhl für Organische Chemie, Bergische Universität Wuppertal, Gaußstraße 20, D-5600 Wuppertal 1

Eingegangen am 7. August 1987

Die Synthese der neuen Bis(1,3-dithiolylium-4-olate) 4a und b, die zwei maskierte Thiocarbonyl-ylid-Systeme enthalten, wird beschrieben. Mit Acetylendicarbonsäure-dimethylester reagieren 4 oder 5 unter COS-Freisetzung zu den 2,2'-verbrückten Bis(thiophen)-Derivaten vom Typ 9, während im Falle der Reaktionen mit Propiolsäure-methylester jeweils zwei Regioisomere 14–16 isolierbar sind. Dagegen verlaufen die Reaktionen von 4 oder 5 mit Benzoylphenylethin oder Phenylethin mit relativ hoher Regioselektivität zu Bis(thiophenen) 19–23 mit Substitutionsmustern vom Typ a oder b. Die beobachteten Regioselektivitäten werden mit Ergebnissen aus der FMO- und PMO-Theorie verglichen.

Unlängst beschrieben wir die Synthesen und physikalischen Eigenschaften erster 2,2'- und 5,5'-verbrückter Bis(1,3-dithiolylium-4olate)^{1,2}, die wie ihre einkernigen Vertreter^{3,4} zur [3 + 2]-Cycloaddition an Alkine unter Bildung von Thiophenen befähigt sein sollten^{3,5-7}. Nachstehend berichten wir über die Ergebnisse der Cycloadditionen von solchen zweikernigen mesoionischen 1,3-Dithiol-4-onen an symmetrisch und unsymmetrisch substituierte Alkine. Darüber hinaus wird die Problematik der Abhängigkeit der Regiochemie von der Verbrückungsposition im Bis(1,3-dithiolylium-4-olat) bei Umsetzungen mit bindungsunsymmetrischen Alkinen behandelt, und die Ergebnisse werden mit Aussagen aus der FMO- und PMO-Theorie verglichen.

1. Darstellung und Eigenschaften der 2,2'-verbrückten Bis(1,3-dithiolylium-4-olate) 4a, b

Die Darstellung von 4a, b orientiert sich am Syntheseweg zu den unlängst von uns beschriebenen und über analoge Positionen verknüpften zweikernigen mesoionischen 1,3-Dithiol-4-onen¹⁾.

2,2'-Bridged Bis(thiophenes) from Bis(1,3-dithiolylium-4-olates) and Alkynes

The synthesis of the novel bis(1,3-dithiolylium-4-olates) 4a and b, which contain two masked thiocarbonyl ylide systems, is described. With dimethyl acetylenedicarboxylate, 4 or 5 react under elimination of COS to produce the 2,2'-bridged bis(thiophene) derivatives of type 9, whereas in the reaction with methyl propiolate in each case two regioisomers 14-16 are isolable. On the other hand, the reactions of 4 or 5 with benzoylphenylethyne or phenylethyne proceed with relatively high regioselectivity to form bis(thiophenes) 19-23 with substitution patterns of type a or b. The observed regioselectivities are compared with the results derived from the FMO and PMO theory.

So erhält man in Anlehnung an Lit.⁸⁾ aus 4,4'-Bis(brommethyl)biphenyl und Natriummethanolat/Schwefel nach anschließender Behandlung mit Piperidin Dipiperidinium-4,4'biphenylylenbis(carbodithioat) (1a), das mit DL-2-Brompropionsäure (2) die Vorstufe 3a liefert. In gleicher Weise setzt sich das bekannte Salz 1b mit 2 zum orangeroten 3b um.

Die Anhydrocyclisierung von **3a**, **b** nimmt man vorteilhaft in etherischer Suspension mit Trifluoressigsäurcanhydrid vor, wobei in glatter Reaktion rotviolette bis violette Kristalle von **4a** bzw. **b** mit C=O-Valenzschwingungen bei 1591 bzw. 1570 cm⁻¹ anfallen. Die in den üblichen organischen Solvenzien ziemlich schwerlöslichen Bis(1,3-dithiolylium-4-olate) **4a** und **b** besitzen aufgrund des Betain-Charakters hohe Zersetzungspunkte, und ihre tiefe Eigenfarbe geht auf das Konto des längstwelligen $\pi \rightarrow \pi^*$ -Elektronenübergangs bei λ_{max} (lg ε) = 542 nm (4.26) bzw. 577 (4.43) im UV-VIS-Spektrum.

Interessanterweise erleiden die rohen Bis(1,3-dithiolylium-4-olate) **4a, b** beim Aufbewahren ihrer entgasten Chloroformlösungen im Dunkeln bei Raumtemperatur eine Polymerisation zu roten Feststoffen mit breiter infraroter C = O-Bande bei 1705 bzw. 1712 cm⁻¹, die einer Thiollactonschwingung entspricht. Da im Zuge der Polymerisation an beiden Molekülenden noch je eine intakte mesoionische 1,3-Dithiol-4-on-Einheit vorhanden ist, die für die rote Eigenfarbe der Polymeren verantwortlich sind, errechnet sich aus der Extinktion der längstwelligen Absorptionsbande bei $\lambda_{max} = 499$ und 515 nm im UV-VIS-Spektrum der Polymerisate ein mittlerer Polymerisationsgrad von $P_n = 89$ (**4a**) bzw. 62 (**4b**).

Eine Parallele findet diese Polymerisation im unlängst beschriebenen Oligomerisationsverhalten von 2,2'-(1,4-Phenylen)bis(5-methyl-1,3-dithiolylium-4-olat)¹⁾. Aufgrund dieser Analogie nehmen wir für die Polymeren die gleiche stereochemische Verknüpfung der

Chem. Ber. 121, 313-322 (1988) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/0202-0313 \$ 02.50/0

R- und A-Schlüssel siehe Tab. 1. und 2

Tab. 1. Bis(thiophendicarbonsäure-dimethylester) 9 aus 4 oder 5 und Acetylendicarbonester 6

Edukt	Pro- dukt 9	R	- A -	Ausb. [%]
4c	a	C ₆ H ₅	1,4-Phenylen	45
4d	b	CH ₃	1,4-Phenylen	12
5a	с	SCH ₃	1,4-Phenylen	35
4e (5b)	d	SC ₂ H ₅	1,4-Phenylen	14 (58)
5c	е	S-t-C ₄ H ₉	1,4-Phenylen	30
5 d	f	C ₆ H ₅	1,3-Phenylen	56
5e	g	C_6H_5	4,4'-Biphenylylen	54
4a	ĥ	CH ₃	4,4'-Biphenylylen	13
· 4b	i	CH ₃	2,6-Naphthylen	74
4f	j	C_6H_5	1,4-Piperazindiyl	18

mesoionischen Einheiten an, wie sie bereits in Lit.¹⁾ für **12** ausführlich beschrieben worden ist.

2. Cycloadditionen 2,2'- und 5,5'-verbrückter Bis-(1,3-dithiolylium-4-olate) 4 bzw. 5 an Acetylendicarbonester 6

Mesoionische Bis(1,3-dithiol-4-one) vom Typ 4 und 5 beinhalten im Fünfring das maskierte 1,3-dipolare System eines Thiocarbonyl-ylids. Wie die einkernigen 1,3-Dithiolylium-4-olate³⁻⁷⁾ sollten sie sich deshalb mit Alkinen nach dem Schema der $[\pi 4_s + \pi 2_s]$ -Cycloaddition zu nicht-isolierbaren Primäraddukten vom Typ 7 oder 8 vereinigen, die dann im Sinne einer Retro-Diels-Alder-Reaktion unter Eliminierung von zwei Molekülen Carbonoxysulfid in die Bis-(thiophen)-Derivate vom Typ 9 übergehen.

Dies ist tatsächlich der Fall. So liefert die Umsetzung von 4c mit Acetylendicarbonsäure-dimethylester (6) in Toluol bei 95-100 °C in 45proz. Ausbeute farblose Nadeln des 2,2'verbrückten Bis(3,4-thiophendicarbonsäure-dimethylesters) 9a. In ähnlicher Weise reagieren die Vertreter 4a, b, d - f und 5a-e mit 6 zu den Bis(thiophendicarbonestern) 9b-j der Tab. 1.

Interessanterweise ist die Ausbeute an 9d bei der Reaktion von 6 mit dem 5,5'-verbrückten Bis(1,3-dithiolylium-4-olat) 5b wesentlich größer (58%) als im Falle der analogen Umsetzung mit dem

2,2'-verbrückten Isomeren 4e (14% 9d). Auch das Dimere 10, das nach früheren Befunden²⁾ thermisch leicht Rückspaltung in 5b erleidet, setzt sich mit 6 in 17proz. Ausbeute zu 9d um. Dagegen geht die geringe Ausbeute an 9b auf das Konto der mit der Cycloaddition konkurrierenden Oligomerisierung von 4d, die thermisch nicht mehr wie beispielsweise im Falle des Dimeren 10 zum Monomeren 4d reversibel ist¹⁾.

Die elementaranalytischen und spektroskopischen Daten sind mit den Konstitutionen der meist hochschmelzenden Bis(thiophen)-Derivate 9 in Einklang. So zeigen 9a, c-f, h, i im IR-Spektrum zwei Estercarbonyl-Banden, wobei die 3,3'-Ester-C=O-Valenzschwingungen von 9c und f noch zusätzlich aufgespalten sind; die Verbindungen 9b, g und j bieten dagegen nur eine C=O-Bande bei 1722-1719 cm⁻¹. Die 4,4'-Ester-C=O-Valenzschwingungen von 9a, f, h und i (1740-1722 cm⁻¹), die bei größeren Wellenzahlen absorbieren als die entsprechenden 3,3'-Ester-C=O-Banden (1719-1705 cm⁻¹), erleiden in 9c-e durch die Einführung der 5ständigen Alkylthiogruppen infolge der Konjugation mit dem Schwefel eine Verschiebung nach niedrigeren Wellenzahlen in den Bereich 1705-1688 cm⁻¹.

In den ¹H-NMR-Spektren erscheinen die Resonanzen der Methoxygruppen als zwei getrennte Singuletts, wobei das Tieffeldsignal den 4,4'-CO₂CH₃-Gruppen der Vertreter **9b**-e zuzuordnen ist; dies lehrt ein Vergleich mit den entsprechenden Spektren der unten beschriebenen Propiolsäure-methylester-Addukte.

3. Reaktionen mit dem Propiolsäureester 13

Mit der unsymmetrisch substituierten CC-Dreifachbindung in Propiolsäure-methylester (13) können sich die zweikernigen mesoionischen 1,3-Dithiol-4-one 4 oder 5 prinzipiell zu drei regioisomeren Bis(thiophencarbonsäure-methylestern) beispielsweise vom Typ 14a-c umsetzen. In diesem Zusammenhang war es von Interesse zu prüfen, wel-

Weitere R- und A-Schlüssel siehe Tab. 2

Tab. 2. Bis(thiophencarbonsäure-methylester) 14-16

Edukt	Produkte	R	A	Ausb Verhältnis
12a	14a, b	C6H5	1,4-Phenylen	41:3.4
11	14b, c	C_6H_5	1,4-Phenylen	27:11
4g	15b, c	C_6H_5	1,3-Phenylen	30:6.6
4d	16 b, c	CH ₃	1,4-Phenylen	26:1.7

chen Einfluß die Verbrückungspositionen im Bis(1,3-dithiolylium-4-olat), 2,2'- bzw. 5,5'-, auf das Regioisomerenverhältnis **14a:b:c** ausübt.

Dabei erzeugte man in zwei Fällen die zweikernigen mesoionischen 1,3-Dithiol-4-one nach der In-situ-Methode aus ihren Vorstufen durch Anhydrocyclisierung mit Acetanhydrid in siedendem Xylol. So erbringt die Umsetzung der Dicarbonsäure 12a mit Acetanhydrid in Gegenwart des Propiolsäureesters 13 nach Kristallisieren und dünnschichtchromatographischer Trennung die regioisomeren Ester 14a und b im 92.3:7.7-Verhältnis, während die analoge Reaktion der Vorstufe 11 ein 71:29-Gemisch aus 14b und c liefert. Weiterhin sind durch Reaktion von 4g oder 4d mit dem Propiolsäureester 13 die Bis(thiophencarbonsäure-methylester) 15b, c bzw. 16b, c der Tab. 2 zugänglich.

Die Zuordnung der Regioisomeren ist im Falle der unsymmetrischen Verbindungen vom Typ c, die zwei OCH₃-Resonanzen im ¹H-NMR-Spektrum aufweisen, sowie für 16b direkt aus den ¹H-NMR-Spektren ableitbar. So findet man für 16b die Resonanz der 5,5'-Methylgruppen bei $\delta = 2.45$ zum Dublett und die der Thiophen-Protonen bei 7.12 zum Quartett mit einer gemeinsamen Allylkopplungskonstanten von ⁴J = 1.0 Hz aufgespalten; dies spricht eindeutig für die 3,3'-Stellung der Carbonestergruppen und damit für Konstitution 16b. Die gleiche Allylkopplungsaufspaltung zeigt auch das ¹H-NMR-Spektrum des Regioisomeren 16c, jedoch erscheinen darüber hinaus noch die Resonanzen einer 5-CH₃-Gruppe und eines Thiophen-3-H jeweils als scharfes Singulett im erwarteten Bereich.

Bei den anderen Propiolsäureester-Addukten ist dagegen die Aufklärung der Additionsrichtungen nicht sofort aus den spektroskopischen Daten eindeutig möglich. Zur ¹H-NMRspektroskopischen Identifizierung der Regioisomeren testeten wir deshalb die Eignung von Lanthaniden-Verschiebungsreagenzien⁹.

Zuerst wurden 16b und c untersucht, da deren Regiochemie bereits aus den üblichen ¹H-NMR-Spektren abgeleitet

Abb. 1. Abhängigkeit der chemischen Verschiebungen δ der Protonen von der Eu(fod)₃-Konzentration in den ¹H-NMR-Spektren von **16b** (Abb. 1a), **16c** (1b), **14a** (1c), **14b** (1d) und **15b** (1e)

316

auf die einzelnen Resonanzlagen genau ermittelt werden kann. In CDCl₃-Lösung von 16b erleiden besonders die ¹H-NMR-Signale der Methoxygruppen und Thiophenprotonen eine deutliche Tieffeldverschiebung auf Eu(fod)3-Zusatz, während die Resonanzen der aromatischen Protonen weniger stark nach niedriger magnetischer Feldstärke verschoben werden. Dagegen bleibt das Methylsignal unverändert (Abb. 1a). Betrachtet man nun den Abstand der betreffenden Protonen vom Ursprung des Sekundärfeldes unter der Annahme, der Pseudo-Kontaktkomplex zwischen dem Substrat und dem Verschiebungsreagenz erfolgt über die Estergruppen, so erkennt man aus Abb. 1a, daß mit zunehmendem räumlichem Abstand von den 3,3'-Estergruppen die isotropen Verschiebungen geringer ausfallen. Offensichtlich ist der räumliche Abstand zwischen den 3,3'-Estergruppen und den 5,5'-Methylgruppen groß genug, um keine Tieffeld-Verschiebung der Methylgruppen-Resonanz mehr zu bewirken.

Für Verbindung **16c** bedeutet dies aber, daß bei nachbarständiger Anordnung von Methyl- und Estergruppe das 5'-Methylsignal nach Zugabe des Verschiebungsreagenzes deutlich nach tiefem Feld verschoben wird (Abb. 1b). Für die aromatischen Protonen folgt daraus eine unterschiedliche Tieffeldverschiebung für die 2,6und 3,5-Protonen, da der räumliche Abstand zu der 3-Estergruppe jetzt verschieden groß ist und die komplexierte 4'-Estergruppe nur einen sehr kleinen Einfluß ausübt. In der Tat erfolgt Separierung der aromatischen Protonen, wie Abb. 1b lehrt.

Überträgt man die an 16b, c gewonnenen Ergebnisse auf die Regioisomeren 14a, b, so sollte im Falle von 14a nach Zugabe von Eu(fod)₃ das Multiplett der 5,5'-Diphenylprotonen aufgefächert und nach tiefem Feld verschoben werden, während die Protonen der verbrückenden 1,4-Phenylengruppe ihre Lage kaum verändern sollten.

Für das Regioisomere 14b hingegen gilt, daß sich die Lage des Multipletts der 5,5'-Diphenylprotonen nicht verändern sollte, während diesmal das Singulett der 1,4-Phenylenprotonen nach tieferem Feld wandert. Wie man aus den Abb. 1c und 1d erkennt, entsprechen die Ergebnisse der Verschiebungsversuche an den Regioisomeren 14a, b den Erwartungen.

Schließlich beobachtet man beim analogen Verschiebungsreagenz-Versuch mit **15b** eine Tieffeldverschiebung der 1,3-Phenylprotonen bei gleichzeitiger deutlicher Auffächerung der Signale, wobei das Triplett von 2-H infolge des kleinsten Abstands zum Sekundärfeld die stärkste Verschiebung erleidet (Abb. 1e). Auch diese Befunde und alle weiteren spektroskopischen Daten (s. Exp. Teil) sind mit den diskutierten Konstitutionen in Einklang.

4. Umsetzungen mit Benzoylphenylethin (17) und Phenylethin (18)

Mit dem weniger elektronenarmen, ebenfalls bindungsunsymmetrischen Benzoylphenylethin (17) reagiert das 2,2'verbrückte Bis(1,3-dithiolylium-4-olat) 4c in 12proz. Ausbeute zu 19a, während die Reaktion des 5,5'-verbrückten Isomeren 5f bei direktem Einsatz – oder vorteilhafter aus dessen Vorstufe 12a mit Acetanhydrid in situ erzeugt – mit 17 das Regioisomere 19b in 3.3- bzw. 18proz. Ausbeute liefert. Auch das aus der Vorstufe 12b generierte 5,5'-verbrückte mesoionische Bis(1,3-dithiol-4-on) vereinigt sich mit 17 zum Regioisomeren 20b (Tab. 3).

R-Schlüssel siehe Tab. 3

Tab. 3. Bis(thiophene) 19-23 aus 4, 5 oder 12 und Alkinen 17 oder 18

Edukte	Produkt	· R	Ausb. [%]
4c, 17	19a	C6H3	12
12a, 17	19b	C_6H_5	18
5f, 17	19b	C_6H_5	3.3
12b, 17	20 b	S-t-C ₄ H ₉	5.8
12a, 18	21 a	C ₆ H ₅	11
4c, 18	21 b	C ₆ H ₅	17
4d, 18	22 a	CH_3	1.2 ^{a)}
12b, 18	23a	S-t-C4H9	26 ^{b)}
5c, 18	23a	S-t-C4H9 ·	23

^{a)} 22a: b-Isomerenverhältnis 94:6. – ^{b)} Und 2.4% 24.

Dabei fallen bei der dünnschichtchromatographischen Aufarbeitung der Mutterlaugen nur noch sehr wenig von den isolierten schwerlöslichen Hauptprodukten an; die Isolierung weiterer Regioisomere in nennenswerten Mengen gelingt jedoch nicht.

Wie diese Ergebnisse zeigen, kommt es auch bei den Reaktionen mit Benzoylphenylethin (17) beim Übergang vom identisch substituierten 2,2'- zum 5,5'-verbrückten Bis(1,3dithiolylium-4-olat) zur bevorzugten Bildung des anderen symmetrisch substituierten Regioisomeren vom Typ **b**.

Auch in diesen Fällen ist die realisierte Regiochemie ¹H-NMRspektroskopisch mit dem Verschiebungsreagenz Eu(fod)3 ableitbar. So beobachtet man bei Zusatz steigender Mengen Eu(fod)₃ im ¹H-NMR-Spektrum von 19a Tieffeldverschiebungen des Singuletts der 1,4-Phenylenprotonen und der Resonanz der vier o-Wasserstoffe der Benzoylgruppen sowie eines Multipletts, das vermutlich den vier o-Wasserstoffen der 4,4'-Diphenylgruppen entspricht; das Multiplett der verbleibenden Protonen erleidet dagegen nur geringfügige Spreizung. Im ¹H-NMR-Spektrum von 19b wird dagegen ein Multiplett von 12 Protonen nach größeren δ-Werten verschoben, und bei $\delta = 7.38$ erscheint ein Singulett von vier Protonen. Eine deutliche Tieffeldverschiebung des Multipletts der o-Benzoylwasserstoffe und des Singuletts der beiden tert-Butylgruppen beobachtet man auch im ¹H-NMR-Spektrum von 20b nach Eu(fod)₃-Zusatz. Weiterhin wird das Multiplett der übrigen aromatischen Protonen gespreizt, und es erscheint ein Singulett von vier Protonen

bei $\delta = 7.25$. Diese Befunde stimmen ebenfalls mit den zugeordneten Formeln überein.

Auch mit Phenylethin (18) setzen sich die mesoionischen Bis(1,3-dithiol-4-one) 4c, d und 5c sowie ihre aus den Vorstufen 12a, b in situ generierten Vertreter zu den Bis(thiophen)-Derivaten 21a, b, 22a und 23a der Tab. 3 um.

R-Schlüssel siehe Tab. 3

Lediglich im Falle der Reaktion von 12b/Acetanhydrid mit 18 wird neben dem Hauptprodukt 23a noch das Folgeprodukt 24 in allerdings nur 2.4proz. Ausbeute isoliert. Die schr geringe Ausbeute an 22a geht auf das Konto einer mit der Cycloaddition konkurrierenden Oligomerisierung des Edukts $4d^{1}$. Weiterhin besteht das isolierte 22a laut ¹H-NMR-Spektrum aus einem dünnschichtchromatographisch nicht trennbaren 94:6-Gemisch aus 22a und 22b.

Die Zuordnung der Regioisomeren **21 a, b** gelingt mit ¹H-NMRund massenspektroskopischen Daten. So findet man im ¹H-NMR-Spektrum von **21 b** das Singulett der 1,4-Phenylenprotonen bei $\delta =$ 7.67, während das Regioisomere **21 a** diese Resonanz bei 7.32 zeigt. Letztere liegt nun im gleichen Bereich, wo auch die C₆H₄-Resonanz der 3,3'-Diphenyl- oder 3,3'-Dibenzoyl-substituierten Bis(thiophene) **19a, b** und **20b** erscheint ($\delta =$ 7.25–7.38). Die gleiche Argumentation gilt auch für **22a** und **23a**. Darüber hinaus sind die beiden Regioisomeren **21 a** und **b** im Massenspektrum an dem Fragment-Ion bei m/z = 310 (M⁺ - S - 2 **18**) bzw. 178 (Ph-C=C-Ph⁺) zu unterscheiden.

Zur Konstitutionsaufklärung überführten wir 23a mit Wasserstoffperoxid/Eisessig in die 5,5'-Bis(*tert*-butylsulfonyl)-Verbindung 25, die gegenüber 23a im ¹H-NMR-Spektrum das Thiophen-H-Singulett um $\Delta \delta = 0.44$ ppm tieffeldverschoben aufweist. Dieser Befund spricht für die in den Formeln 25 und 23a skizzierte 4,4'-Stellung dieser Protonen.

Ebenfalls unsubstituierte 4,4'-Positionen enthält das "Zersetzungsprodukt" 24, das im ¹H-NMR-Spektrum das Thiophen-4'-H als Singulett bei $\delta = 7.23$ – also im gleichen Bereich wie in Verbindung 23a (7.19) – aufweist, während das Thiophen-4-H bei 6.90 absorbiert. Die konstitutionelle Zuordnung von **22a** folgt dagegen problemlos aus der beobachtbaren Dublett-Quartett-Allylkopplungsaufspaltung zwischen den isochronen 5,5'-Dimethylgruppen und den beiden ebenfalls isochronen Thiophen-4,4'-H-Atomen im ¹H-NMR-Spektrum.

Als Besonderheit weisen die meisten der hier beschriebenen Bis(thiophen)-Derivate in ihren Massenspektren doppelt geladene Molekül- und/oder Fragment-Ionen auf (s. Exp. Teil).

5. Orientierungsphänomene bei den [3 + 2]-Cycloadditionen von 4 oder 5 an bindungsunsymmetrische Alkine

Die im Falle der Cycloadditionen der Bis(1,3-dithiolylium-4-olate) 4 oder 5 an bindungsunsymmetrische Alkine beobachteten Regioselektivitäten, deren Kenntnis für die synthetische Anwendung dieser Umsetzungen von Wichtigkeit ist, sind auf der Basis der FMO-^{10,11} und PMO-Theorie¹⁰ erklärbar. Als Modellreaktionen wählten wir die Umsetzungen der einkernigen mesoionischen Vertreter **26a**, **b** mit den Alkinen **13**, **17** und **18**, wobei wir für **17** und **18** die relevanten Grenzorbitalenergien nach dem MNDO-Verfahren¹² ermittelten (Tab. 4).

Tab. 4. Grenzorbital-Koeffizienten und -Energien (HO, LU) sowie Nettoatomladungen q_{x} , Dipolmomente μ und Standardbildungsenthalpien (ΔH_{f}^{o}) der Alkine 17 und 18 nach MNDO¹²)

_	HO(LU)-Ko	effizienten	E [eV]	q_1
	c ₁	c ₂	HO(LU)	(q_2)
17 ^{a)}	0.3867	0.2225	-9.415	0.0194
	(-0.2738	0.3034	-0.650	0.0249)
18 ^{b)}	0.2510 (-0.1799	0.3883 0.3254	$-9.126 \\ -0.003$	-0.0349 -0.0349)

^{a)} $\mu = 3.17$ Debye, $\Delta H_{f}^{\circ} = 64.80$ kcal \cdot mol⁻¹. $-^{b)} \mu = 0.02$ Debye, $\Delta H_{f}^{\circ} = 74.06$ kcal \cdot mol⁻¹.

Tab. 5. Nach dem 3. Term der Störungsgleichung^{10a)} für beide Regioisomere errechnete Energien [eV] der Cycloadditionen von 26 an die bindungsunsymmetrischen Dipolarophile 13, 17 und 18 (Resonanzintegral $\beta_{\rm CC} = 5.00$ eV ^{10b})

 $\begin{array}{c} O \ominus \\ C_{6}H_{5} - S \\ 26 \\ C_{6}H_{5} - C \equiv C - C \\ C_{6}H_{5} - C \equiv C - C \\ C_{6}H_{5} - C \equiv C - C \\ C_{6}H_{5} \\ 17 \\ \end{array} \begin{array}{c} 26 \\ C_{6}H_{5} - C \equiv C \\ C_{6}H_{5} \\ 18 \\ \end{array} \begin{array}{c} 26 \\ C_{6}H_{5} - C \equiv C \\ C_{6}H_{5} \\ 18 \\ \end{array} \begin{array}{c} 26 \\ C_{6}H_{5} - C \equiv C \\ C_{6}H_{5} \\ 18 \\ \end{array}$

Edukte	1,3-Dipol (26)- <i>Alkin</i> -Wechselwirkung C(2)C(1)/C(5)C(2) [C(2)C(2)/C(5)C(1)]			
26 a ^{a)} , 13 ^{b)}	- 2.439	[-2.193]		
26 a ^{a)} , 17	-1.209	[-0.966]		
26 b ^{c)} , 17	-1.322	[-1.001]		
26 a ^{a)} , 18	- 0.983	[-1.063]		
26 b ^{c)} , 18	-1.039	[-1.190]		

^{a)} Berechnet mit den MNDO-Daten für **26a**¹³⁾. $^{b)}$ Berechnet mit den MNDO-Daten für **13**¹⁴⁾. $^{c)}$ Berechnet mit den MNDO-Daten für **26b**¹³⁾.

Mit den Daten der Tab. 4 und den MNDO-Daten für 26^{13} und 13^{14} erhält man unter Berücksichtigung jeweils beider HO-LU-Grenzorbitalwechselwirkungen nach dem 3. Term der Störungsgleichung^{10a)} die in Tab. 5 für beide Additionsrichtungen aufgelisteten Energien.

Die sich daraus ergebenden energetisch bevorzugten Regioisomeren stimmen mit früheren experimentellen Befunden, die mit einkernigen 1,3-Dithiolylium-4-olaten erzielt worden sind, gut überein⁷⁾. Wie Tab. 6 zeigt, entspricht in der Reihe der zweikernigen mesoionischen 1,3-Dithiol-4-one 4 und 5 das isolierte Hauptregioisomere der theoretischen Erwartung.

Tab. 6. Gegenüberstellung der theoretisch nach den Daten der Tab. 5 zu erwartenden und experimentell tatsächlich aufgefundenen regioisomeren Bis(thiophene) 14, 19-21 und 23 aus 4 oder 5 und bindungsunsymmetrischen Alkinen

Edukte	theor. erwartete exp. gefundene Bis(thiophene) ^{a)}		
$13 + 4c^{b}; (+ 5f^{b})$	14b, c, a; (14a, c, b)	14b, c; (14a, b)	
17 + 4c; (+ 5f)	19 a, c, b; (19 b, c, a)	19a; (19b)	
17 ; $(+ 5c^{b})$	(20 b, c, a)	(20 b)	
18 + 4c; (+ 5f ^{b)})	21 b, c, a; (21 a, c, b)	21 b; (21 a)	
18 ; (+ 5c)	(23 a, c, b)	(23a)	

^{a)} Nach fallender Priorität bzw. Ausbeute geordnet. $-^{b)}$ In situ aus der Vorstufe mit Acetanhydrid erzeugt.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir bestens für die Förderung dieses Forschungsprogramms. Unser besonderer Dank gilt auch Herrn Prof. Dr. W. Thiel, Universität Wuppertal, für die Möglichkeit der Benutzung des Rechenprogramms, dem Rechenzentrum der Universität Wuppertal für Rechenzeit, Herrn Dr. D. Müller und Frau J. Schäfer, Ruhr-Universität Bochum, für die Registrierung einiger Massenspektren, sowie der Bayer AG, der Hoechst AG und der BASF AG für die Überlassung von Chemikalien.

Experimenteller Teil

IR-Spektren: Perkin-Elmer-Spektrophotometer 397 und 1420. -UV-Spektren: Perkin-Elmer-Spektrophotometer 550. - ¹H-NMR-Spektren (Tetramethylsilan als interner Standard): Varian EM 360 (60 MHz) und EM 390 (90 MHz). Wenn nicht anders erwähnt, wurden die Spektren bei 90 MHz registriert. Zur Ermittlung des Einflusses eines Lanthaniden-Verschiebungsreagenzes auf die chemische Verschiebung der 'H-Resonanzen versetzt man die Lösung aus 3.0-4.0 mg Substanz in 0.40 ml CDCl₃ insgesamt viermal mit abgewogenen Mengen (Zuwaage jeweils 2.0 - 16 mg) Eu(fod)3 (fod = 6,6,7,7,8,8,8-Heptafluor-2,2-dimethyl-3,5-octandion), registriert jedesmal das ¹H-NMR-Spektrum bei 90 MHz und trägt die chemische Verschiebung jeder Protonensorte gegen mg Eu(fod)3 auf (s. Abb. 1). - Massenspektren (70 eV): Varian MAT 311 A. -Schmelzpunkte: Modell MFB-595 der Fa. Gallenkamp (Metallblock), unkorrigiert. - Präparative DC-Platten: 2 mm Kieselgel PF₂₅₄₊₃₆₆ der Fa. Merck; Aktivierung durch 3stdg. Erhitzen auf 120 – 125°C. – Säulenchromatographie (SC): Kieselgel 60 (Korngröße 0.040-0.063 mm) der Fa. Merck. Die Trennungen erfolgten nach der Methode der Flash-Chromatographie¹⁵⁾. – Die Cycloadditionen wurden in absol. Lösungsmitteln unter Stickstoff-Schutz ausgeführt.

Synthese der Vorstufen

Dipiperidinium-4,4'-biphenvlylenbis(carbodithioat) (1a): 8.43 g (0.367 mol) Natrium löst man in 400 ml absol. Methanol, versetzt mit 11.73 g (0.366 mol) Schwefel und rührt 2 h bei 110°C (Bad). Innerhalb 2 h fügt man 30.00 g (88.3 mmol) 4,4'-Bis(brommethyl)biphenyl¹⁶ hinzu, rührt 16 h bei 70°C (Bad), saugt das abgeschiedene Natriumbromid ab und wäscht mit Methanol nach. Die vereinigte organische Phase wird i. Vak. eingeengt, der ölige Rückstand in Wasser gelöst und die Lösung zweimal mit je 100 ml Ether gewaschen. Man fällt mit 2 N H₂SO₄, wäscht den olivgrünen Niederschlag mit Wasser neutral, suspendiert in 750 ml Dioxan und versetzt mit 30 ml Piperidin. Der hellbraune Niederschlag liefert aus Methanol/Wasser 23.40 g (56%) dunkelbraune Kristalle mit Zers.-P. $164 - 165 \,^{\circ}\text{C}$. - IR (KBr): $3200 - 2200 \,\text{cm}^{-1}$ (NH₂⁺), 1597 und 1577 (C=C), 1005 (CS₂⁻). – UV (Ethanol): λ_{max} (lg ϵ) = 224 nm (4.77), 275 (sh, 4.18), 330 (4.26). - MS: m/z (%) = 408 (1, M⁺ - $2 H_2 S$), 324 (1, M⁺ - 2 CS₂), 308 (1, M⁺ - 2 C₅H₁₀N), 272 (14, $M^+ - 2C_5H_{11}N - H_2S$, 256 (7), 192 (7), 84 (100, $C_5H_{10}N^+$).

DL-4,4'-Biphenylylenbis(dithiocarbonsäure)-bis(1-carboxyethylester) (3a). Die Suspension aus 1.50 g (3.15 mmol) 1a und 30 ml Aceton versetzt man mit einer Lösung aus 1.12 g (7.32 mmol) DL-2-Brompropionsäure (2) und 20 ml Aceton, rührt 4 h bei 60°C (Bad), engt i. Vak. ein, wäscht den roten Feststoff mit Wasser und löst ihn in gesättigter, wäßriger Natriumcarbonatlösung. Man wäscht zweimal mit je 100 ml Ether, säuert mit 2 N H₂SO₄ an und arbeitet über die Etherphase auf. Ausb. 0.750 g (53%) rote Kristalle mit Zers.-P. $209-210^{\circ}$ C (aus Methanol/Wasser). – IR (KBr): $3400 - 2400 \text{ cm}^{-1}$ (OH), 1715 sh und 1692 (C=O), 1598 und 1546 (C=C); intensive Banden bei 1233, 1202, 1184, 1050, 880, 819. -UV (Ethanol): λ_{max} (lg ϵ) = 343 nm (4.67), 498 (2.89). - ¹H-NMR $([D_6]DMSO): \delta = 1.62$ (d, J = 7.0 Hz; 6H, 2CHCH₃), 4.60 (q, J = 7.0 Hz; 2H, 2CHCH₃), 7.77-8.07 (AA'BB'; 8H, 4,4'-Biphenyldiyl-H), acide H nicht lokalisierbar. – MS: m/z (%) = 450 (5, M^+), 418 (5, $M^+ - S$), 345 (48, $M^+ - CH_3CH(S)CO_2H$), 330 (15), $272 (33, 345 - CH_3CHCO_2H), 240 (43, 272 - S), 225 (67, M^{2+}),$ 196 (100, 240 - CS), 152 (48, 196 - CS), 121 (33), 106 (24), 64 (30),61 (33).

C20H18O4S4 (450.6) Ber. C 53.31 H 4.03 Gef. C 53.11 H 3.87

DL-2,6-Naphthalinbis (dithiocarbonsäure)-bis (1-carboxyethylester) (3b): Analog erhält man aus 3.30 g (7.33 mmol) Dipiperidinium-2,6-naphthalinbis(carbodithioat)^{17,18)} (1b) in 45 ml Aceton und 2.63 g (17.2 mmol) 2 in 25 ml Aceton 1.95 g (63%) feine, orangerote Kristalle mit Zers.-P. 215–216°C (aus Methanol/Wasser). – IR (KBr): 3400–2400 cm⁻¹ (OH), 1742, 1720 sh und 1700 (C=O), 1583 (C=C). – UV (Ethanol): λ_{max} (lg ε) = 248 nm (4.66), 305 (4.41), 370 (4.52), 530 (2.85). – ¹H-NMR ([D₆]DMSO): δ = 1.64 (d, J = 7.1 Hz; 6H, CHCH₃), 4.64 (q, J = 7.1 Hz; 2H, CHCH₃), 7.96–8.31 (m; 4H, Naphthalin-H), 8.58 (m_c; 2H, Naphthalin-H), acide H nicht lokalisierbar. – MS: m/z (%) = 424 (6, M⁺), 351 (5, M⁺ – CH₃CHCO₂H – S), 214 (28, 246 – S), 198 (9), 170 (79), 126 (25), 107 (18), 84 (9), 63 (26), 60 (100), 44 (100, CO₂⁺).

 $C_{18}H_{16}O_4S_4 \ (424.6) \quad \text{Ber. C } 50.92 \ H \ 3.80 \quad \text{Gef. C } 51.13 \ H \ 3.81$

2,2'-(4,4'-Biphenylylen)bis(5-methyl-1,3-dithiolylium-4-olat) (4a): Unter Magnetrührung versetzt man die Suspension aus 0.600 g (1.33 mmol) 3a und 20 ml absol. Ether bei 0°C (Bad) mit 0.60 ml eiskaltem Trifluoressigsäureanhydrid und saugt nach 2 h von 0.441 g (80%) rotvioletten Kristallen mit Zers.-P. 265-268°C ab. – IR (KBr): 1591 cm⁻¹ (C=O), 809 (p-disubst. C₆H₄-Wagging). – UV (Chloroform): λ_{max} (lg ε) = 287 nm (4.11), 315 (sh, 4.00), 350 (sh, 3.96), 542 (4.26).

Polymerisierung von 4a

a) Die heiße filtrierte Lösung aus 88.0 mg (0.213 mmol) 4a und 50 ml Chloroform wird nach Abkühlen in einer Ampulle i. Hochvak. nach der Freeze-Pump-Thaw-Methode entgast. Dann wird zugeschmolzen und 6 Wochen im Dunkeln bei Raumtemp. aufbewahrt. Nach Einengen der tiefroten Lösung zeigt der rote Feststoff beim Erhitzen ab 120 °C Farbvertiefung und Zers.-P. 149-151 °C (Gasentwicklung).

b) Die UV-spektroskopische Verfolgung der Oligomerisierung von **4a** in Chloroform bei Raumtemp. zeigt innerhalb von 2 h eine hypsochrome Verschiebung der längstwelligen Absorptionsbande bei $\lambda_{max} = 542$ nm unter gleichzeitiger Verminderung der Extinktion um den Faktor 18.3. – IR (KBr): 1705 cm⁻¹ (C=O), 1598 (C=C). – UV (Chloroform): λ_{max} [Ig ε , berechnet für die mittlere Molmasse (414.6)₈₉] = 499 nm (4.259).

2,2'-(2,6-Naphthylen)bis(5-methyl-1,3-dithiolylium-4-olat) (4b): Analog erhält man aus 1.20 g (2.83 mmol) 3b, 40 ml absol. Ether und 2.40 ml Trifluoressigsäureanhydrid 1.05 g (96%) violette Kristalle mit Zers.-P. 233-235°C. – IR (KBr): 1585 sh und 1570 cm⁻¹ (C=O). – UV (Chloroform): λ_{max} (lg ε) = 247 nm (4.49), 256 (sh, 4.47), 268 (4.46), 300 (sh, 4.01), 364 (sh, 3.84), 577 (4.43).

Polymerisierung von 4b

a) Analog der Polymerisierung von 4a ergeben 0.102 g (0.263 mmol) 4b in 50 ml Chloroform einen roten Feststoff mit Zers.-P. $> 160 \,^{\circ}$ C (ab 120 $^{\circ}$ C Farbvertiefung).

b) Auch hier zeigt die UV-spektroskopische Verfolgung der Oligomerisierung von **4b** in Chloroform bei Raumtemp. innerhalb von 2 h eine hypsochrome Verschiebung der längstwelligen Absorptionsbande von $\lambda_{max} = 577$ nm nach 526 unter gleichzeitiger Extinktionsabnahme um den Faktor 4.1. – IR (KBr): 1712 cm⁻¹ (C=O), 1603 (C=C). – UV (Chloroform): λ_{max} [Ig ϵ , berechnet für die mittlere Molmasse (388.6)₆₂] = 515 nm (4.429).

Bis(thiophen)-Abkömmlinge

2,2'-(1,4-Phenylen)bis(5-phenyl-3,4-thiophendicarbonsäure-dimethylester) (9a): Die Suspension aus 0.461 g (0.997 mmol) 2,2'-(1,4-Phenylen)bis(5-phenyl-1,3-dithiolylium-4-olat)¹⁾ (4c), 0.567 g (3.99 mmol) Acetylendicarbonsäure-dimethylester (6) und 20 ml Toluol erhitzt man 1.5 d auf 95-100°C (Bad), saugt nach Entfärbung die ausgefallenen Kristalle bei Raumtemp. ab, engt das Filtrat i. Vak. ein, versetzt mit Methanol und läßt im Kühlschrank kristallisieren. Die vereinigten Kristallfraktionen ergeben 0.278 g (45%) kleine, farblose Nadeln mit Schmp. 238°C (aus Chloroform/Petrolether). - IR (KBr): 1722 cm^{-1} (4,4'-Ester-C=O), 1714 (3,3'-Ester-C=O), 1535 (C=C), 1235, 1197 und 1170 (C-O). - ¹H-NMR $(CDCl_3, 60 \text{ MHz}): \delta = 3.73 \text{ und } 3.77 (2 \text{ s}; 12\text{ H}, 4 \text{ OCH}_3), 7.13 - 7.39$ (m; 10 H, 2 C₆H₅), 7.50 (s; 4 H, p-disubst. C₆H₄). - MS (230 °C): m/z $(\%) = 626 (100, M^+), 595 (8, M^+ - OCH_3), 563 (9, 595 - S),$ 313 (8, M^{2+}), 297.5 (6, 595²⁺), 282 [17, (M - 2 OCH₃)²⁺], 121 (6, C₆H₅CS⁺).

2,2'-(1,4-Phenylen)bis(5-methyl-3,4-thiophendicarbonsäure-dimethylester) (9b): 0.342 g (1.01 mmol) 2,2'-(1,4-Phenylen)bis(5-methyl-1,3-dithiolylium-4-olat)¹¹ (4d), 0.575 g (4.05 mmol) 6 und 30 ml Xylol [4 h, 125-130 °C (Bad)] ergeben nach Filtrieren, Einengen i. Vak. und Kristallisieren des Rückstands aus Ethanol 62.9 mg (12%) blaßgelbe Schuppen mit Schmp. 162--163 °C. -- IR (KBr): 1720 cm⁻¹ br. (C=O), 1560 und 1542 (C=C), 1223 und 1210 sh C₂₄H₂₂O₈S₂ (502.6) Ber. C 57.36 H 4.41 Gef. C 57.16 H 4.61

2,2'-(1,4-Phenylen)bis[5-(methylthio)-3,4-thiophendicarbonsäure-dimethylester] (9c): 0.604 g (1.50 mmol) 5,5'-(1,4-Phenylen)bis[2-(methylthio)-1,3-dithiolylium-4-olat]²¹ (5a), 1.06 g (7.47 mmol) 6 und 30 ml Xylol [36 h, 120 °C (Bad)] erbringen nach Kristallisieren des Eindampfrückstands aus Methanol 0.301 g (35%) feine, blaßgelbe Nadeln mit Schmp. 219 °C. -- IR (KBr): 1730 und 1722 cm⁻¹ (3,3'-Ester-C=O), 1688 (4,4'-Ester-C=O), 1218, 1203 und 1174 (C-O). - ¹H-NMR (CDCl₃, 60 MHz): δ = 2.63 (s; 6H, 2 SCH₃), 3.85 (s; 6H, 3,3'-CO₂CH₃), 3.89 (s; 6H, 4,4'-CO₂CH₃), 7.49 (s; 4H, p-disubst. C₆H₄). - MS (170 °C): m/z (%) = 566 (100, M⁺), 535 (14, M⁺ - OCH₃), 503 (15, M⁺ - OCH₃ - S), 471 (6, M⁺ -OCH₃ - 2 S), 443 (8, 471 - CO), 100 (17), 98 (19), 85 (38), 71 (53), 57 (69), 43 (38).

2,2'-(1,4-Phenylen)bis[5-(ethylthio)-3,4-thiophendicarbonsäuredimethylester] (9d)

a) 0.324 g (0.752 mmol) 2,2'-(1,4-Phenylen)bis[5-(ethylthio)-1,3dithiolylium-4-olat]¹⁾ (4e), 0.462 g (3.25 mmol) 6 und 40 ml Toluol [6 h, 95--100°C (Bad)] ergeben nach Filtrieren, Einengen des Filtrats i. Vak. und Kristallisieren aus Toluol/Ether 61.2 mg (14%) gelbe Kristalle mit Schmp. 207°C.

b) 0.430 g (0.998 mmol) $5,5'-(1,4-Phenylen)bis[2-(ethylthio)-1,3-dithiolylium-4-olat)^{21}$ (**5b**), 0.566 g (3.99 mmol) **6** und 15 ml Xylol [18 h, 130°C (Bad)] liefern nach Verdünnen der gelben Reaktionslösung mit Ether 0.343 g (58%) gelbe Kristalle mit Schmp. 207°C (aus Chloroform/Ether), die mit obigem Produkt übereinstimmen (Misch.-Schmp., IR-Vergleich).

c) Aus 0.203 g (0.236 mmol) Dimeres²ⁱ 10, 0.324 g (2.28 mmol) 6 und 25 ml Xylol [2 d, 125 °C (Bad)] erhält man nach Kristallisieren des Eindampfrückstands 47.4 mg (17%) gelbe Kristalle mit Schmp. 207 °C (aus Toluol/Ether), identisch mit den obigen Produkten (Misch.-Schmp., IR-Vergleich).

IR (KBr): 1732 cm⁻¹ (3,3'-Éster-C=O), 1704 (4,4'-Ester-C=O), 1238 und 1210 (C-O). - ¹H-NMR (CDCl₃, 60 MHz): $\delta = 1.44$ (t, J = 7.3 Hz; 6H, 2SCH₂CH₃), 3.08 (q, J = 7.3 Hz; 4H, 2SCH₂CH₃), 3.81 (s; 6H, 3,3'-CO₂CH₃), 3.88 (s; 6H, 4,4'-CO₂CH₃), 7.46 (s; 4H, *p*-disubst. C₆H₄). - MS (194°C): m/z (%) = 594 (100, M⁺), 565 (13, M⁺ - C₂H₃), 563 (13, M⁺ - OCH₃), 529 (18), 264.5 (11, 529²⁺), 85 (15), 83 (25), 59 (10, CO₂CH₃⁺), 48 (13).

 $\begin{array}{c} C_{26}H_{26}O_8S_4 \ (594.8) \\ Gef. \ C \ 52.51 \ H \ 4.41 \ S \ 21.57 \\ Gef. \ C \ 52.41 \ H \ 4.35 \ S \ 21.40 \end{array}$

2,2'-(1,4-Phenylen)bis[5-(tert-butylthio)-3,4-thiophendicarbonsäure-dimethylester] (9e): 0.729 g (1.50 mmol) 5,5'-(1,4-Phenylen)bis[2-(tert-butylthio)-1,3-dithiolylium-4-olat]²⁾ (5c), 0.851 g (5.99 mmol) 6 und 20 ml Toluol [2 d, 100 °C (Bad)] ergeben nach Aufnahme des Eindampfrückstands in heißem Methanol und Versetzen mit wenig Wasser 0.295 g (30%) blaßgelbe Nadeln mit Schmp. 179 °C. – IR (KBr): 1739 cm⁻¹ (3,3'-Ester-C=O), 1705 (4,4'-Ester-C=O). – ¹H-NMR (CDCl₃, 60 MHz): $\delta = 1.42$ [s; 18H, 2C(CII₃)₃], 3.75 (s; 6H, 3,3'-CO₂CH₃), 3.91 (s; 6H, 4,4'-CO₂CH₃), 7.52 (s; 4H, p-disubst. C_6H_4). – MS (170°C): m/z (%) = 650 (5, M⁺), 619 (1, M⁺ – OCH₃), 594 (6, M⁺ – C_4H_8), 562 (3, 594 – S), 538 (19, M⁺ – 2 C_4H_8), 506 (55, 538 – S), 474 (19, 506 – S), 442 (8, 474 – S), 180 (6), 77 (7), 57 (100, $C_4H_7^+$), 41 (47, $C_3H_5^+$). $C_{30}H_{34}O_8S_4$ (650.9) Ber. C 55.36 H 5.27 S 19.70

Gef. C 55.57 H 5.42 S 19.75

2.2'-(1,3-Phenylen)bis(5-phenyl-3.4-thiophendicarbonsäure-dimethylester) (9f): 0.466 g (1.01 mmol) 5,5'-(1,3-Phenylen)bis(2-phenyl-1,3-dithiolylium-4-olat)²¹ (5d), 0.575 g (4.05 mmol) 6 und 30 ml Xylol [8 h, 125-130°C (Bad)] liefern 0.356 g (56%) farblose Kristalle mit Schmp. 152°C (aus Methanol oder Chloroform/Petrolether). - IR (KBr): 1740 cm⁻¹ (4,4'-Ester-C=O), 1719 und 1712 sh (3,3'-Ester-C=O), 1598 und 1575 (C=C), 1242, 1225, 1207 und 1173 (C-O). - ¹H-NMR (CDCl₃, 60 MHz): $\delta = 3.72$ (s; 6H, 2 OCH₃), 3.75 (s; 6H, 2 OCH₃), 7.16-7.62 (m; 14H, Aromaten-H). - MS (203°C): m/z (%) = 626 (100, M⁺), 563 (60, M⁺ - OCH₃ - S), 313 (2, M²⁺), 297.5 [22, (M - OCH₃)²⁺], 282 (22, M²⁺ - 2 OCH₃), 266 [11, (M - 2 OCH₃ - S)²⁺], 121 (11, C₆H₅CS⁺), 105 (7), 59 (5, CO₂CH⁺).

2,2'-(4,4'-Biphenylylen)bis(5-phenyl-3.4-thiophendicarbonsäuredimethylester) (**9g**): 0.566 g (1.05 mmol) 5,5'-(4,4'-Biphenylylen)bis-(2-phenyl-1,3-dithiolylium-4-olat)²⁾ (**5e**), 0.575 g (4.05 mmol) **6** und 30 ml Xylol [7 h, 125 – 135 °C (Bad)] erbringen nach Filtrieren und Kristallisieren des Eindampfrückstands aus heißem Methanol 0.401 g (54%) blaßgelbe Blättchen mit Schmp. 195 – 196 °C (aus Chloroform/Methanol). – IR (KBr): 1722 cm⁻¹ (C=O), 1598 und 1538 (C=C), 1241, 1207 und 1173 (C-O). – ¹H-NMR (CDCl₃, 60 MHz): $\delta = 3.70$ (s; 6H, 2 OCH₃), 3.74 (s; 6H, 2 OCH₃), 7.34, 7.36 und 7.54 (3 m_c; 18H, Aromaten-H). – MS (215 °C): *m/z* (%) = 702 (100, M⁺), 671 (16, M⁺ – OCH₃), 639 (3, M⁺ – OCH₃ – S), 351 (12, M²⁺), 335.5 (10, 671²⁺), 320 [24, (M – 2 OCH₃)²⁺], 276.5 (5, 553²⁺), 121 (8, C₆H₅CS⁺), 105 (2).

 $\begin{array}{rrrr} C_{40}H_{30}O_8S_2 \ (702.8) & \mbox{Ber. C} \ 68.36 & \mbox{H} \ 4.30 & \mbox{S} \ 9.13 \\ & \mbox{Gef. C} \ 68.13 & \mbox{H} \ 4.26 & \mbox{S} \ 9.11 \end{array}$

2,2'-(4,4'-Biphenylylen)bis(5-methyl-3,4-thiophendicarbonsäuredimethylester) (9h): 0.403 g (0.973 mmol) 4a, 0.603 g (4.25 mmol) 6 und 30 ml Toluol [3 h, 110°C (Bad)] ergeben nach Aufarbeitung durch DC mit Toluol/Essigester (6:4) 71.0 mg (13%) lange, farblose Kristalle ($R_f = 0.62$) mit Zers.-P. 210-211°C (aus Dichlormethan/ Methanol oder Toluol). – IR (KBr): 1735 cm⁻¹ (4,4'-Ester-C=O), 1705 (3,3'-Ester-C=O), 1604, 1550 und 1535 (C=C), 1238, 1205 und 1174 (C-O). – 'H-NMR (CDCl₃, 60 MHz): $\delta = 2.68$ (s; 6H, 2 CH₃), 3.82 (s; 6H, 2 OCH₃), 3.85 (s; 6H, 2 OCH₃), 7.55 (me; 8H, Aromaten-H). – MS: m/z (%) = 578 (100, M⁺), 546 (41, M⁺ – CH₃OH), 531 (16, 546 – CH₃), 460 (28, M⁺ – 2 CO₂CH₃), 440 (10, 531 – CO₂CH₃ – S), 428 (10, 460 – CH₃OH), 342 (24, 460 – 2 CO₂CH₃), 257 [23, (M – 2 CH₃OH)²⁺], 214 (18, 428²⁺), 57 (11). C₃₀H₂₆O₈S₂ (578.7) Ber. C 62.27 H 4.53 Gef. C 60.98 H 4.51

2,2'-(2,6-Naphthylen)bis(5-methyl-3,4-thiophendicarbonsäure-dimethylester) (9i): Aus 0.178 g (0.459 mmol) 4b, 0.312 g (2.20 mmol) 6 und 10 ml Toluol erhält man nach Kristallisieren des Eindampfrückstands 0.188 g (74%) farblose Kristalle mit Zers.-P. 221 bis 222°C (aus Toluol). – IR (KBr): 1730 cm⁻¹ (4,4'-Ester-C=O), 1709 (3,3'-Ester-C=O), 1600 und 1532 (C=C). – ¹H-NMR (CDCl₃, 60 MHz): $\delta = 2.71$ (s; 6H, 2CH₃), 3.78 (s; 6H, 2OCH₃), 3.87 (s; 6H, 2OCH₃), 7.18–7.90 (m; 6H, Naphthalin-H). – MS: m/z (%) = 552 (100, M⁺), 520 (27, M⁺ – CH₃OH), 505 (15, 520 – CH₃), 434 (10, M⁺ – 2CO₂CH₃), 314 (14), 244 [25 (M – 2CH₃OH]²⁺].

C28H24O8S2 (552.6) Ber. C 60.86 H 4.38 Gef. C 60.72 H 4.41

2,2'-(1,4-Piperazindiyl)bis(5-phenyl-3,4-thiophendicarbonsäuredimethylester) (9j): 0.482 g (1.03 mmol) 2,2'-(1,4-Piperazindiyl)bis(5phenyl-1,3-dithiolylium-4-olat)¹⁾ (4f), 0.578 g (4.07 mmol) 6 und 40 ml Acetonitril [1.5 h, 60°C (Bad)] liefern nach Kristallisieren des Eindampfrückstands mit Aceton/Ether 0.117 g (18%) farblose Kristalle mit Schmp. 252–253°C (aus Chloroform/Petrolether). – IR (KBr): 1719 cm⁻¹ (C=O), 1599 und 1544 (C=C); intensive Banden bei 1271, 1231, 1207, 1192, 1170, 1011. – ¹H-NMR (CDCl₃, 60 MHz): $\delta = 3.41$ (s; 8H, 4 NCH₂), 3.71 (s; 6H, 4,4'-CO₂CH₃), 3.78 (s; 6H, 3,3'-CO₂CH₃), 7.31 (mc; 10H, 2C₆H₅). – MS (217°C): m/z (%) = 634 (37, M⁺), 619 (29, M⁺ – CH₃), 603 (4, M⁺ – OCH₃), 571 (3, M⁺ – OCH₃ – CH₃OH oder – S), 317 (9, M²⁺), 285.5 (16, 571²⁺), 272 (35), 254 (45), 121 (22, C₆H₅CS⁺), 83 (33), 45 (100). C₃₂H₃₀N₂O₈S₂ (634.7) Ber. C 60.55 H 4.76 N 4.41 S 10.10 Gef. C 60.30 H 4.74 N 4.27 S 10.20

2,2'-(1,4-Phenylen)bis(5-phenyl-4-thiophencarbonsäure-methylester) (14a), 2,2'-(1.4-Phenylen)bis(5-phenyl-3-thiophencarbonsäure-methylester) (14b) und 2,2'-(1,4-Phenylen)bis(5-phenylthiophen)-3.4'-dicarbonsäure-dimethylester (14c)

a) Die Mischung aus 0.168 g (0.337 mmol) DL-1,4-Phenylenbis-{[(thiobenzoyl)thio]essigsäure}²⁾ (**12a**), 0.142 g (1.69 mmol) Propiolsäure-methylester (**13**), 0.140 g (1.37 mmol) Acetanhydrid und 10 ml Xylol erhitzt man 14 h auf 136 °C (Bad), engt i. Vak. auf ca. 5 ml ein, läßt bei -20 °C kristallisieren und saugt **14a** ab. Präparative DC des Mutterlaugenrückstands liefert nach neunmaliger Entwicklung mit Toluol/Essigester (97:3) insgesamt 72.8 mg (41%) **14a** als farblose Kristalle mit Schmp. 253–254 °C (aus Toluol) und 6.40 mg (3.4%) **14b**, blaßgelbe Kristalle mit Schmp. 250 °C (aus Toluol). **14a** und **b** schließen bei der Kristallisation aus Toluol, Chloroform oder Dichlormethan das Lösungsmittel ein, das bei über 190 °C i. Hochvak. nicht entfernbar ist.

b) Nach 10 h Erhitzen von 0.169 g (0.339 mmol) Tetrathioterephthalsäure-bis(carboxyphenylmethylcster)¹⁰ (11), 0.160 g (1.91 mmol) 13, 0.145 g (1.42 mmol) Acetanhydrid und 10 ml Xylol auf 130 °C (Bad) kristallisiert beim Abkühlen 14b aus, das durch mehrfaches Umkristallisieren aus Toluol isomerenfrei mit Schmp. 250 °C ausfällt und mit obigem Produkt übereinstimmt (Misch.-Schmp., IR-Vergleich). Trennung des Rückstands der vereinigten Mutterlaugen durch DC mit Toluol/Essigester (97:3) ergibt nach sechsmaliger Entwicklung insgesamt 50.3 mg (27%) 14b sowie 18.7 mg (11%) 14c als blaßgelbe Prismen mit Schmp. 203–204 °C (aus Dichlormethan/Petrolether).

14a: IR (KBr): 1715 cm⁻¹ (C=O), 1593 und 1547 (C=C), 1459, 1214, 1017, 829, 759. - ¹H-NMR (CDCl₃): $\delta = 3.77$ (s; 6H, 2 OCH₃), 7.37 – 7.57 (m; 10H, 2 C₆H₅), 7.63 (s; 4H, *p*-disubst. C₆H₄), 7.73 (s; 2H, Thiophen-3-H, 3'-H). - MS: m/z (%) = 510 (100, M⁺), 479 (7, M⁺ – OCH₃), 419 (2, M⁺ – CO₂CH₃ – S), 255 (7, M²⁺), 239.5 [4, (M – OCH₃)²⁺], 224 [12, (M – 2 OCH₃)²⁺], 121 (15, C₆H₅CS⁺), 84 (8), 77 (5), 56 (11).

 $\begin{array}{c} C_{30}H_{22}O_4S_2\cdot 1/4\ C_7H_8\ (533.7) & \text{Ber. C } 71.46 & H\ 4.53 & S\ 12.02 \\ & \text{Gef. C } 71.35 & H\ 4.53 & S\ 12.09 \end{array}$

14b: IR (KBr): 1697 cm⁻¹ (C=O), 1599 und 1578 (C=C), 1460, 1440, 1260, 1219, 779, 762. $-^{1}$ H-NMR (CDCl₃): $\delta = 3.80$ (s; 6 H, 2 OCH₃), 7.28 – 7.65 (m; 10 H, 2 C₆H₅), 7.57 (s; 4 H, *p*-disubst. C₆H₄), 7.70 (s; 2 H, Thiophen-4-H, -4'-H). - MS (170 °C): m/z (%) = 510 (100, M⁺), 447 (26, M⁺ – OCH₃ – S), 420 (12), 419 (8, 447 – CO), 255 (10, M²⁺), 203.5 (6, 407²⁺), 187.5 (14), 173.5 (9), 152 (18), 121 (14, C₆H₅CS⁺), 89 (16), 77 (10).

 $\begin{array}{c} C_{30}H_{22}O_4S_2\cdot 1/2 \ C_7H_8 \ (556.7) & \mbox{Ber. C} \ 72.28 \ H \ 4.71 \ S \ 11.52 \\ & \mbox{Gef. C} \ 72.55 \ H \ 4.57 \ S \ 11.94 \end{array}$

14c: IR (KBr): 1725 cm⁻¹ (4'-Ester-C=O), 1704 (3-Ester-C=O), 1593 und 1550 (C=C), 1277, 1254, 1212, 1186, 1145, 830, 753. -

¹H-NMR (CDCl₃): $\delta = 3.80$ (s; 3 H, 4'-CO₂CH₃), 3.83 (s; 3 H, 3-CO₂CH₃), 7.30-7.69 (m; 14 H, 2 C₆H₅, *p*-disubst. C₆H₄), 7.71 (s; 1 H, Thiophen-4-H), 7.76 (s; 1 H, Thiophen-3'-H). - MS (185°C): *m/z* (%) = 510 (100, M⁺), 479 (11, M⁺ - OCH₃), 447 (7, M⁺ - OCH₃ - S), 419 (9, 447 - CO), 255 (9, M²⁺), 239.5 (9), 223.5 (10), 121 (34, C₆H₅CS⁺), 105 (16), 77 (25), 57 (37), 47 (75).

$C_{30}H_{22}O_4S_2$ Ber. 510.0960 Gef. 510.0965 (MS)

2.2'-(1,3-Phenylen)bis(5-phenyl-3-thiophencarbonsäure-methylester) (15b) und 2,2'-(1,3-Phenylen)bis(5-phenylthiophen)-3,4'-dicarbonsäure-dimethylester (15c): 0.463 g (1.00 mmol) 2,2'-(1,3-Phenylen)bis(5-phenyl-1,3-dithiolylium-4-olat)¹¹ (4g), 0.430 g (5.12 mmol) 13 und 12 ml Xylol [2 Wochen, 90°C (Bad)] liefern nach SC mit Xylol/Essigester (97:3) 0.372 g öliges lsomerengemisch. Trennung durch DC [zwölfmal mit Xylol/Essigester (98:2) entwikkelt] ergibt 0.153 g (30%) 15b als farbloses, zähcs Öl sowie 33.6 mg (6.6%) 15c, farblose Kristalle mit Schmp. 141°C (aus Chloroform/ Petrolether).

15b: IR (KBr): 1722 und 1710 cm⁻¹ (C = O), 1603, 1582 und 1549 (C = C), 1254 sh, 1237, 1220, 1200, 1148, 759, 695. - ¹H-NMR (CDCl₃, 60 MHz): δ = 3.80 (s; 6H, 2 OCH₃), 7.24 – 7.67 (m; 14H, 2 C₆H₅, *m*-disubst. C₆H₄), 7.74 (s; 2H, Thiophen-4-H, -4'-H). – MS (190 °C): *m/z* (%) = 510 (100, M⁺), 447 (37, M⁺ – OCH₃ – S), 419 (21, 447 – CO), 233.5 (7), 209.5 (11), 121 (15, C₆H₅CS⁺), 105 (10), 77 (9).

15c: IR (KBr): 1724 und 1708 sh cm⁻¹ (C=O), 1599, 1578 und 1543 (C=C), 1250, 1229, 1215, 1148, 754, 689. $-^{1}$ H-NMR (CDCl₃): $\delta = 3.81$ (s; 3H, OCH₃), 3.84 (s; 3H, OCH₃), 7.38–7.83 (m; 16H, 2C₆H₅, *m*-disubst. C₆H₄, Thiophen-3'-H, -4-H). – MS (188°C): *m*/z (%) = 510 (100, M⁺), 479 (16, M⁺ – OCH₃), 447 (6, M⁺ – OCH₃ – S), 419 (6, 447 – CO), 255 (10, M²⁺), 239.5 (15), 223.5 (13), 174.5 (6), 121 (15, C₆H₅CS⁺), 77 (4).

2,2'-(1,4-Phenylen)bis(5-methyl-3-thiophencarbonsäure-methylester) (16b) und 2,2'-(1,4-Phenylen)bis(5-methylthiophen)-3,4'-dicarbonsäure-dimethylester (16c): 0.672 g (1.99 mmol) 4d¹¹, 0.710 g (8.45 mmol) 13 und 20 ml Xylol erhitzt man 15 min auf 136 °C (Bad) und trennt das Produktgemisch durch SC mit Toluol/Essigester (90:10) von Polymeren ab. Reines 16b fällt bei der Kristallisation aus Aceton an. Trennung des Mutterlaugenrückstands durch DC mit obigem Fließmittel ergibt insgesamt 0.197 g (26%) 16b als farblose Nadeln mit Schmp. 156 °C und 13.1 mg (1.7%) 16c, farblose Nadeln mit Schmp. 123-124.5 °C (aus Aceton).

16b: IR (KBr): 1728 cm⁻¹ (C=O), 1559 und 1522 (C=C), 1267, 1219, 1191, 1168, 834, 823, 773, 758. – UV (Chloroform): λ_{max} (Ig ε) = 250 nm (sh, 4.13), 322 (4.23). – ¹H-NMR (CDCi₃): δ = 2.45 (d, ⁴J = 1.0 Hz; 6H, 2 CH₃), 3.70 (s; 6H, 2 OCH₃), 7.12 (q, ⁴J = 1.0 Hz; 2H, Thiophen-3-H, -3'-H), 7.42 (s; 4H, *p*-disubst. C₆H₄). – MS (100 °C): *m/z* (%) = 386 (100, M⁺), 323 (60, M⁺ – OCH₃ – S), 295 (12, M⁺ – OCH₃ – S – CO), 162 [19, (M – 2 OCH₃)²⁺]. 105 (5), 59 (11, CO₂CH₃⁺).

16c: IR (KBr): 1712 (C=O), 1557, 1545 und 1516 (C=C), 1270, 1242, 1216, 1190, 1165, 816, 772. - ¹H-NMR (CDCl₃): $\delta = 2.50$ (d, ⁴J = 1.2 Hz; 3H, 5-CH₃), 2.80 (s; 3H, 5'-CH₃), 3.80 (s; 3H, 3-CO₂CH₃), 3.94 (s; 3H, 4'-CO₂CH₃), 7.17 (q, ⁴J = 1.2 Hz; 1H, Thiophen-4-H), 7.43-7.65 (AA'BB'; 4H, *p*-disubst. C₆H₄), 7.65 (s; 1H, Thiophen-3'-H). - MS (112°C): m/z (%) = 386 (100, M⁺), 371 (24,

 $M^+ - CH_3$), 327 (7, 355 - CO), 323 (6, $M^+ - OCH_3 - S$), 177.5 (7), 169.5 (10), 162 [11, ($M - 2OCH_3$)²⁺], 59 (17, $CO_2CH_3^+$).

$$\begin{array}{cccc} C_{20}H_{18}O_4S_2 \ (386.5) & \mbox{Ber. C} \ 62.15 & \mbox{H} \ 4.70 \\ \mbox{16b: } & \mbox{Gef. C} \ 62.04 & \mbox{H} \ 4.68 \\ \mbox{16c: } & \mbox{Ber. 386.0647} \ \mbox{Gef. 386.0644} \ (\mbox{MS}) \end{array}$$

2,2'-(1,4-Phenylen)bis(3-benzoyl-4,5-diphenylthiophen) (19 a): Aus 0.465 g (1.01 mmol) 4c¹, 0.819 g (3.98 mmol) Benzoylphenylethin (17) und 10 ml Xylol [2.5 d, 136°C (Bad)] erhält man nach Kühlung 94.3 mg (12%) blaßgelbe Nadeln mit Schmp. 320-321°C (aus Xylol). – IR (KBr): 1666 cm⁻¹ (C=O), 1599, 1581 und 1538 (C=C). – UV (Chloroform): λ_{max} (lg c) = 248 nm (4.50), 341 (4.37). – ¹H-NMR (CDCl₃): δ = 7.12-7.29 (m; 26H, Aromaten-H), 7.33 (s; 4H, *p*-disubst. C₆H₄), 7.58-7.70 (m; 4H, Benzoyl-2-, -2'-, -6-, -6'-H). – MS (300°C): *m*/*z* (%) = 754 (52, M⁺), 377 (10, M²⁺), 338.5 [5, (M – C₆H₅)²⁺], 121 (4, C₆H₅CS⁺), 105 (100. C₆H₅-CO⁺), 77 (37).

2,2'-(1,4-Phenylen)bis(4-benzoyl-3,5-diphenylthiophen) (19b)

a) 0.498 g (1.00 mmol) $12a^{29}$, 0.625 g (3.03 mmol) 17, 0.631 g (6.19 mmol) Acetanhydrid und 5.0 ml Xylol [4 d, 136 °C (Bad)] ergeben nach Kristallisieren im Kühlschrank 0.138 g (18%) gelbe Nädelchen mit Schmp. 340 °C (aus Dichlormethan/Petrolether).

b) Analog liefern 0.462 g (1.00 mmol) 5,5'-(1.4-Phenylen)bis(2-phenyl-1,3-dithiolylium-4-olat)²¹ (**5**f), 0.632 g (3.07 mmol) 17 und 5.0 ml Xylol [2.5 d, 136°C (Bad)] 24.9 mg (3.3%) gelbe Nädelchen mit Schmp. 340°C, die mit obigem Produkt übereinstimmen (Misch.-Schmp., IR-Vergleich). – IR (KBr): 1662 cm⁻¹ (C=O), 1599, 1581 und 1550 (C=C). – UV (Chloroform): λ_{max} (lg c) = 254 nm (4.63), 345 (4.48). – ¹H-NMR (CDCl₃): δ = 7.13–7.48 (m; 30H, Aromaten-H), 7.60–7.71 (m; 4H, Benzoyl-2-, -2'-, -6-, -6'-H). – MS (360°C): *m/z* (%) = 754 (63, M⁺), 677 (1, M⁺ – C₆H₅), 377 (10, M²⁺), 338.5 [3, (M – C₆H₃)²⁺], 300 [3, (M – 2C₆H₅)²⁺], 121 (5, C₆H₅CS⁺), 105 (100, C₆H₅CO⁺), 77 (25).

$C_{52}H_{34}O_2S_2$ (755.0)	Ber.	C 82.73	H 4.54	S 8.50
19a:	Gef.	C 82.54	H 4.74	S 8.42
1 9 b :	Gef.	C 82.52	H 4.63	

2,2'-(1,4-Phenylen)bis[4-benzoyl-5-(tert-butylthio)-3-phenylthiophen] (20b): 0.528 g (1.01 mmol) DL-1.4-Phenylenbis{[(tert-butylthio)thioxomethylthio]essigsäure}²⁾ (12b), 0.504 g (2.45 mmol) 17, 0.601 g (5.89 mmol) Acetanhydrid und 5.0 ml Xylol [1 d, 136°C (Bad)] erbringen nach SC mit Toluol 45.3 mg (5.8%) farblose Nädelchen mit Schmp. 270 – 271°C (aus Aceton/Dichlormethan). – IR (KBr): 1670 cm⁻¹ (C=O), 1598, 1581 und 1534 (C=C). – ¹H-NMR (CDCl₃): $\delta = 1.33$ [s; 18H, 2C(CH₃)₃], 7.06 (m_c; 10H, 3-, 3'-C₆H₅), 7.13 – 7.47 (m; 10H, Aromaten-H), 7.57 – 7.70 (m; 4H, Benzoyl-2-, -2'-, -6-, -6'-H). – MS (262°C): m/z (%) = 778 (8, M⁺). 722 (5, M⁺ – C₄H₈), 666 (73, M⁺ – 2C₄H₈), 588 (2, 666 – C₆H₆), 333 (2, 666²⁺), 105 (100, C₆H₅CO⁺), 77 (29), 57 (55, C₄H₉⁺).

C48H42O2S4 (779.1) Ber. C 74.00 H 5.43 Gef. C 74.11 H 5.48

2,2'-(1,4-Phenylen)bis(3,5-diphenylthiophen) (**21 a**): 0.498 g (1.00 mmol) 12a²⁾, 0.510 g (5.00 mmol) 18, 0.901 g (8.83 mmol) Acetanhydrid und 10 ml Xylol [30 h, 136 °C (Bad)] erbringen nach SC mit Toluol/Petrolether (1:1) 60.6 mg (11%) gelbe Nädelehen mit Schmp. 256-257 °C (aus Dichlormethan/Petrolether). Die Substanz schließt bei der Kristallisation 1/9 Moläquiv. Dichlormethan ein. – IR (KBr): 1600 cm⁻¹, 1578 und 1553 (C=C). – UV (Chloroform): λ_{max} (lg c) = 266 nm (4.59), 361.5 (4.54). – ⁻¹H-NMR (CDCl₃): δ = 7.32 (s; 4H, p-disubst. C₆H₄), 7.34 – 7.59 (m; 18H, 16 Aromaten-H, 2 Thiophen-H), 7.68 – 7.79 (m; 4H, Aromaten-H. – MS (198 °C): m/z (%) = 546 (100, M⁺), 310 (11, M⁺ – S – 2C₆H₅C₂H), 273 (25, M²⁺), 121 (24, C₆H₅CS⁺), 77 (9).

2,2'-(1,4-Phenylen)bis(4,5-diphenylthiophen) (21b): 0.462 g (1.00 mmol) $4c^{11}$, 0.800 g (7.84 mmol) Phenylethin (18) und 10 ml Xylol [1 d, 136°C (Bad)] liefern nach SC mit Toluol/Petrolether (1:1) 91.6 mg (17%) feine, gelbe Nadeln mit Schmp. 260.5 - 262 °C (aus Dichlormethan/Petrolether). Bei der Kristallisation werden 1/9 Moläquiv. Dichlormethan im Kristall eingeschlossen, das auch i. Hochvak. bei 190°C nicht mehr entfernbar ist. Bei der Umfällung wird dagegen kein Lösungsmittel eingeschlossen. - IR (KBr): 1600 cm⁻¹, 1574 und 1557 (C=C). – UV (Chloroform): λ_{max} $(\lg \varepsilon) = 269.5 \text{ nm}$ (4.42), 365 (4.61). $- {}^{1}\text{H-NMR}$ (CDCl₃): $\delta =$ 7.16-7.44 (m; 20 H, $4C_6H_5$), 7.38 (s; 2 H, Thiophen-3-, -3'-H), 7.67 (s; 4 H, p-disubst. C_6H_4). - MS (205 °C): m/z (%) = 546 (100, M⁺), 273 (25, M^{2+}), 178 (5, $C_{14}H_{10}^+$), 121 (15, $C_6H_5CS^+$), 85 (27), 83 (41).

C38H26S2 (546.8) Ber. C 83.48 H 4.79 S 11.73 21 b: Gef. C 83.33 H 4.88 S 11.79 C38H26S2 · 1/9 CH2Cl2 Ber. C 82.30 H 4.75 Cl 1.42 21a: Gef. C 81.97 H 4.74 Cl 1.12 21 b: Gef. C 82.03 H 4.78

2.2'-(1,4-Phenylen)bis(5-methyl-3-phenylthiophen) (22a) und 2.2'-(1.4-Phenylen)bis(5-methyl-4-phenylthiophen) (22b): 1.41 g (4.17 mmol) 4d¹⁾ trägt man während 3 h bei 136°C (Bad) in eine Lösung aus 2.03 g (19.9 mmol) 18 in 5.0 ml Xylol ein und trennt anschlie-Bend durch SC mit Toluol/Petrolether (1:4) 21.2 mg (1.2%) blaßgelbe Kristalle mit Schmp. 208.5-210°C (aus Aceton) ab. Laut ¹H-NMR-Spektrum bestehen die Kristalle aus einem 94:6-Gemisch aus 22 a und b. - IR (KBr): 1603 cm⁻¹, 1577 und 1557 (C=C). -¹H-NMR (CDCl₃): $\delta = 2.48$ (d, J = 1.3 Hz; 6H, 2CH₃), 6.74 (q, J = 1.3 Hz; 2H, Thiophen-4-, -4'-H), 7.07 (s; 4H, p-disubst. C₆H₄), 7.22 (m_c; 10H, 2C₆H₅). – MS (145°C): m/z (%) = 422 (100, M⁺), 211 (10, M²⁺), 187 (10).

C₂₈H₂₂S₂ Ber. 422.1163 Gef. 422.1166 (MS)

2,2'-(1,4-Phenylen)bis[5-(tert-butylthio)-3-phenylthiophen] (23a) und 5-tert-Butyl-5'-(tert-butylthio)-3,3'-diphenyl-2,2'-(1,4-phenylen)bis(thiophen) (24)

a) 0.753 g (1.44 mmol) 12b², 0.715 g (7.01 mmol) 18, 1.41 g (13.8 mmol) Acetanhydrid und 10 ml Xylol erhitzt man 16 h auf 130°C (Bad), engt i. Vak. ein und trennt das Produktgemisch durch SC mit Toluol/Petrolether (1:9) ab. Direktes Kristallisieren aus Aceton liefert reines 23a mit Schmp. 212-213°C. Den Mutterlaugenrückstand unterwirft man einer DC, wobei dreimal mit obigem Fließmittel entwickelt wird. Man erhält insgesamt 0.215 g (26%) 23a als blaßgelbe Nadeln und 18.4 mg (2.4%) 24 als farblose Kristalle mit Schmp. 192°C (aus Dichlormethan/Petrolether).

b) 0.324 g (0.67 mmol) $5c^{2}$, 0.635 g (6.23 mmol) 18 und 5.0 ml Xylol [16 h, 136°C (Bad)] ergeben nach Kristallisieren aus Aceton 87.3 mg (23%) 23a mit Schmp. 212-213°C, das mit obigem Produkt übereinstimmt (Misch.-Schmp., IR-Vergleich). Auf eine Isolierung von 24 wurde verzichtet.

23a: IR (KBr): 1602 cm⁻¹, 1577 und 1544 (C=C). - ¹H-NMR $(CDCl_3)$: $\delta = 1.38$ [s; 18H, 2C $(CH_3)_3$], 7.18 (s; 4H, p-disubst. C₆H₅), 7.19 (s; 2H, Thiophen-4-, -4'-H), 7.29 (m_c; 10H, $2C_6H_5$). – MS $(197 \,^{\circ}\text{C})$: m/z (%) = 570 (30, M⁺), 514 (11, M⁺ - C₄H₈), 458 (100, $M^+ - 2C_4H_8$, 424 (13, 458 - H₂S), 390 (8, 424 - H₂S), 121 (4, $C_6H_5CS^+$), 57 (81, $C_4H_9^+$).

> C34H34S4 (570-9) Ber. C 71.53 H 6.00 S 22.47 Gef. C 71.26 H 5.86 S 22.04

24: IR (KBr): 1597 cm⁻¹, 1574 und 1543 (C=C). - ¹H-NMR $(CDCl_3)$: $\delta = 1.43$ [s; 9H, C $(CH_3)_3$], 1.48 [s; 9H, SC $(CH_3)_3$], 6.90 (s; 1 H, Thiophen-4-H), 7.21 (s; 4 H, p-disubst. C₆H₄), 7.23 (s; 1 H, Thiophen-4'-H), 7.33 (m_c; 10H, 2C₆H₅). - MS (162 °C): m/z (%) = 538 (37, M^+), 482 (97, $M^+ - C_4H_8$), 467 (89, $M^+ - C_4H_8 - CH_3$), 435 (6, 467 - S), 233.5 [25, $(M - C_4H_8 - CH_3)^{2+}$], 121 (8, C₆H₅-CS⁺), 57 (100, C₄H₉⁺).

C₃₄H₃₄S₃ (538.8) Ber. C 75.79 H 6.36 Gef. C 75.72 H 6.13

Überführung von 23a in 2,2'-(1,4-Phenylen)bis[5-(tert-butylsulfonyl)-3-phenylthiophen] (25): Eine Mischung aus 0.116 g (0.203 mmol) 23a, 1.0 ml Toluol, 1.00 ml 30proz. Wasserstoffperoxid und 30 ml Eisessig erwärmt man 1 h auf 75 °C (Bad), wobei sich nach ca. 20 min aus der dann klaren Lösung Kristalle abscheiden. Nach Kühlung saugt man ab und kristallisiert aus Chloroform/Petrolether zu 97.7 mg (76%) farblosen Nadeln mit Schmp. 292-293°C um. – IR (KBr): 1305 cm⁻¹ (symm. SO₂), 1121 (antisymm. SO₂). – ¹H-NMR (CDCl₃): $\delta = 1.50$ [s; 18H, 2C(CH₃)₃], 7.12-7.33 (m; 10H, 2C₆H₅), 7.20 (s; 4H, p-disubst. C₆H₄), 7.63 (s; 2H, Thiophen-4, -4'-H). – MS (235°C): m/z (%) = 634 (7, M⁺), 578 (6, M⁺) C_4H_8), 522 (14, M⁺ - 2 C_4H_8), 505 (4, 522 - OH), 458 (6, 522 - SO_2), 441 (3, 458 - OH), 64 (5, SO_2^+), 57 (100, $C_4H_9^+$).

C34H34O4S4 (634.9) Ber. C 64.32 H 5.40 S 20.20 Gef. C 64.25 H 5.44 S 20.16

CAS-Registry-Nummern

1a: 110699-21-3 / 1b: 92827-63-9 / (±)-2: 10327-08-9 / 3a: 110699-22-4 / 3b: 110699-23-5 / 4a: 110718-09-7 / 4b: 110743-54-9 / 4c: 110699-24-6 / 4d: 110699-25-7 / 4e: 110699-26-8 / 4f: 110699-27-9 / 4g: 110699-43-9 / 5a: 110699-28-0 / 5b: 110699-29-1 / 5c: 110699-30-4 / 5d: 110699-31-5 / 5e: 106064-89-5 / 5f: 110699-51-9 / 6: 462-42-5 / 9a: 110699-32-6 / 9b: 110699-33-7 / 9c: 110699-34-8 / 9d: 110699-35-9 / 9e: 110699-36-0 / 9f: 110699-37-1 / 9g: 110699-38-2 / 9h: 110699-39-3 / 9i: 110699-40-6 / 9j: 110699-41-7 10: 106064-92-0 / 11: 104976-81-0 / 12a: 110699-42-8 / 12b: 110699-52-0 / 13: 922-67-8 / 14a: 110699-44-0 / 14b: 110699-45-1 / 14c: 110699-46-2 / 15b: 110699-47-3 / 15c: 110699-48-4 / 16b: 110699-49-5 / 16c: 110699-50-8 / 17: 7338-94-5 / 18: 536-74-3 / 19a: 110699-53-1 / 19b: 110718-10-0 / 20b: 110699-54-2 / 21a: 110699-55-3 / **21b**: 110699-56-4 / **22a**: 110699-57-5 / **22b**: 110699-59-7 / **23a**: 110699-58-6 / **25**: 110699-60-0 / **26a**: 20850-89-9 / **26b**: 66927-64-8 / (BrCH₂C₆H₄-p)₂: 20248-86-6

- ¹⁾ H. Gotthardt, W. Pflaumbaum, Chem. Ber. 120 (1987) 61.
- ²⁾ H. Gotthardt, W. Pflaumbaum, Chem. Ber. 120 (1987) 411.
- ³⁾ H. Gotthardt in Comprehensive Heterocyclic Chemistry (A. R. Katritzky, C. W. Rees, K. T. Potts, Ed.), Bd. 6, S. 813, Pergamon Press Ltd., Oxford 1984.
- ⁴⁾ H. Gotthardt, M. C. Weisshuhn, B. Christl, Chem. Ber. 109 (1976) 740.
- ⁵⁾ H. Gotthardt, M. C. Weisshuhn, B. Christl, Chem. Ber. 109 (1976) 753.
- ⁶⁾ H. Gotthardt, C. M. Weisshuhn, *Chem. Ber.* 111 (1978) 2021. ⁷⁾ H. Gotthardt, C. M. Weisshuhn, *Chem. Ber.* 111 (1978) 2028.
- ⁸⁾ Badische Anilin- & Soda-Fabrik AG (Erf. F. Becke, H. Hagen), D. B. P. 1274121 (16. Juni 1967) [Chem. Abstr. 70 (1969) 3573 v].
- ⁹⁾ M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 2. Aufl., S. 184, Thieme, Stuttgart 1984.
- ¹⁰ I. Fleming, Grenzorbitale und Reaktionen organischer Verbindungen, Verlag Chemic GmbH, Weinheim 1979. ¹⁰/₁₀₈ Lit.¹⁰, S. 32. ¹⁰⁵/₁₀₅ Lit.¹⁰, S. 175.
- ¹¹⁾ K. Fukui, Acc. Chem. Res. 4 (1971) 57.
- ¹²⁾ M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899.
- ¹³⁾ H. Gotthardt, R. Jung, Chem. Ber. 118 (1985) 3438.
- ¹⁴⁾ H. Gotthardt, J. Blum, Chem. Ber. 118 (1985) 2079
- ¹⁵⁾ W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 43 (1978) 2923.
- ¹⁶⁾ H. A. Staab, M. Haenel, Chem. Ber. 106 (1973) 2190.
- ¹⁷⁾ M. R. Bryce, Tetrahedron Lett. 25 (1984) 2403
- ¹⁸⁾ S. C. Chen, E. LeGoff, Heterocycles 22 (1984) 2065.

[220/87]